2 research outputs found

    Computational approaches to alleviate alarm fatigue in intensive care medicine: A systematic literature review

    Get PDF
    Patient monitoring technology has been used to guide therapy and alert staff when a vital sign leaves a predefined range in the intensive care unit (ICU) for decades. However, large amounts of technically false or clinically irrelevant alarms provoke alarm fatigue in staff leading to desensitisation towards critical alarms. With this systematic review, we are following the Preferred Reporting Items for Systematic Reviews (PRISMA) checklist in order to summarise scientific efforts that aimed to develop IT systems to reduce alarm fatigue in ICUs. 69 peer-reviewed publications were included. The majority of publications targeted the avoidance of technically false alarms, while the remainder focused on prediction of patient deterioration or alarm presentation. The investigated alarm types were mostly associated with heart rate or arrhythmia, followed by arterial blood pressure, oxygen saturation, and respiratory rate. Most publications focused on the development of software solutions, some on wearables, smartphones, or headmounted displays for delivering alarms to staff. The most commonly used statistical models were tree-based. In conclusion, we found strong evidence that alarm fatigue can be alleviated by IT-based solutions. However, future efforts should focus more on the avoidance of clinically non-actionable alarms which could be accelerated by improving the data availability

    The influence of patient characteristics on the alarm rate in intensive care units: a retrospective cohort study

    Get PDF
    Intensive care units (ICU) are often overflooded with alarms from monitoring devices which constitutes a hazard to both staff and patients. To date, the suggested solutions to excessive monitoring alarms have remained on a research level. We aimed to identify patient characteristics that affect the ICU alarm rate with the goal of proposing a straightforward solution that can easily be implemented in ICUs. Alarm logs from eight adult ICUs of a tertiary care university-hospital in Berlin, Germany were retrospectively collected between September 2019 and March 2021. Adult patients admitted to the ICU with at least 24 h of continuous alarm logs were included in the study. The sum of alarms per patient per day was calculated. The median was 119. A total of 26,890 observations from 3205 patients were included. 23 variables were extracted from patients' electronic health records (EHR) and a multivariable logistic regression was performed to evaluate the association of patient characteristics and alarm rates. Invasive blood pressure monitoring (adjusted odds ratio (aOR) 4.68, 95%CI 4.15-5.29, p < 0.001), invasive mechanical ventilation (aOR 1.24, 95%CI 1.16-1.32, p < 0.001), heart failure (aOR 1.26, 95%CI 1.19-1.35, p < 0.001), chronic renal failure (aOR 1.18, 95%CI 1.10-1.27, p < 0.001), hypertension (aOR 1.19, 95%CI 1.13-1.26, p < 0.001), high RASS (aOR 1.22, 95%CI 1.18-1.25, p < 0.001) and scheduled surgical admission (aOR 1.22, 95%CI 1.13-1.32, p < 0.001) were significantly associated with a high alarm rate. Our study suggests that patient-specific alarm management should be integrated in the clinical routine of ICUs. To reduce the overall alarm load, particular attention regarding alarm management should be paid to patients with invasive blood pressure monitoring, invasive mechanical ventilation, heart failure, chronic renal failure, hypertension, high RASS or scheduled surgical admission since they are more likely to have a high contribution to noise pollution, alarm fatigue and hence compromised patient safety in ICUs
    corecore